
Foundations of Languages for
Interpretability and Bias Detection

Pablo Barceló1,2, Jorge Pérez2,3, Bernardo Subercaseaux2,3

1 Institute for Mathematical and Computational Engineering, PUC-Chile
2 Department of Computer Science, Universidad de Chile

3 Millennium Institute for Foundational Research on Data, Chile
pbarcelo@ing.puc.cl, [jperez,bsuberca]@dcc.uchile.cl

Abstract

Despite the growing interest in interpretability for machine learning models, there
seems to be a gap between the world of researchers and that of practitioners and
data scientists. Declarative languages, tailored for interactive interpretability and
bias detection of models, could be a step towards shortening such a gap. Based
on requirements often posed over interpretability tasks, it is desirable for such
languages to be interactive, model agnostic, faithful to the models, and have
clear and well-understood semantics and complexity. A reasonable way to meet
several of these requirements is by having a language strongly rooted in logic. As
a first step towards the design of such language, we study how interpretability
and bias detection queries can be expressed in first-order logic (FO) –arguably,
one of the most prominent logics in different areas of computer science– over a
suitable encoding of machine learning models. We then study the computational
complexity of evaluating FO formulae over linear-based, tree-based and deep
models. Evaluation is shown to be easier for decision trees and perceptrons than
it is for deep neural networks, which seems validated by folklore assumptions
of the field. Finally, we discuss possible extensions to the underlying logical
structure and how they enhance expressiveness, as well as possible directions
towards tractability.

1 Introduction

While research in methods for interpretability and bias detection has seen a significant increase
in recent years [4], it seems that there is still a gap between the research community producing
such methods and the community of data scientists and practitioners they are designed for [18, 20].
Although the exact extent of this gap remains to be determined [18], a line of research studying its
nature and opportunities for growth seems to be emerging [18, 20]. An important concern in this
respect is how to make the interpretation, auditing, and bias detection of machine learning processes
as accessible as possible for non-experts. In particular, there is an increasing need for user-friendly
interpretability and bias detection toolkits.

An interesting example of a user-friendly toolkit for bias and fairness detection is that of Aequitas
[28], which automatically creates reports for users, based on labeled and predicted data, that include
several metrics of bias and fairness. Each of such metrics can be understood as the answer to a
particular query about the model to be interpreted. Furthermore, several well-defined queries about
a model’s behavior, or even particular decisions made by a model, can be found in the literature
[11]. Popular methods to enhance interpretability, such as SHAP or Shapley values [23], can also be
thought of as answers to a particular interpretability query.

Preprint. Under review.

The abundance of particular interpretability and bias detection queries in the literature suggests that
one could aim for a general query language, tailored for interpretability and bias detection tasks, in
which such queries can be declaratively expressed. This is of course reminiscent of the path many
other areas in computer science have followed, in particular by using languages rooted in formal
logic. For instance, in data management many formalisms based on first-order logic, or some of its
extensions, have been developed for posing queries over different data models [1]; in knowledge
representation the family of description logics is routinely applied for modeling application domains
and extracting information over such models [5]; and in the area of model checking suitable temporal
logics serve as bug-detection languages for specifying undesired behaviors of systems [9]. One of the
advantages of this approach is that logics have a well-defined syntax and semantics, which typically
facilitates the optimization and theoretical study of the computational complexity of the queries
expressed in the language.

Several authors have advocated over the last years that logic should also have a prominent role in the
context of interpretability for machine learning models [7, 10]. We strongly believe, in fact, that logic
has to be key in the development of languages for interpretability and bias detection tasks. The reason
is that logic-based languages help in establishing several good properties that seem to be desirable in
this context. These properties include:

• Faithfulness: A language must only give answers that are faithful to the model, meaning
that they can be mathematically verified, and are produced rigorously from the properties of
the considered model, rather than by a learning process [27].

• Interactivity: Following [35], interpretation is not to be understood as a result but rather a
process in which users interact with the system in order to interpret it and progressively gain
understanding and trust.

• Clear syntax and semantics: Such a language must be well understood. It must be perfectly
clear, in each interaction with the language, what exactly is that the user is querying, and
what exactly is that the results retrieved mean.

• Model agnosticism: Considering the variety of models and architectures that are present
in Machine Learning, it is desirable for such a system to allow interpretation (maybe to
different degrees) of any model or architecture [26].

For logical languages, faithfulness can be obtained from the, provably correct, algorithms for query
evaluation. Interactivity stems from the fact that the user is allowed to ask repeated queries, and
design queries upon the answers obtained to the previous ones. A clear syntax and semantics is a sine
qua non condition for a logical language to be accepted as such. Finally, model agnosticism comes
from the fact that both at the language and logic level, the user refers to the model as an abstract
entity that gives answers to inputs, without dealing with its internals. Therefore, any query can be
applied to any underlying model of the same dimension.

Our paper aims to take initial steps in the direction of a logic-based language for interpretability
and bias detection tasks, by identifying an underlying logic capable of expressing many natural
interpretability and bias detection queries, and formally studying its complexity of evaluation. As an
overview of our proposal consider the case of a bank using a binary model to judge applications for
loans. Figure 1a illustrates the problem with concrete features, and Figure 1b presents an example
of a concrete interactive syntax. In Figure 1b after loading and exploring the model saved in a file
"mlp.np", the first interaction asks whether the model could give a loan to a person who is married
and does not have kids. We next show intuitively how can we formalize this interaction in a logical
language.

Besides considering binary features as inputs, our formal setting considers also a third value, ⊥, to
represent that some feature is undefined (can take any value). We consider a binary logical predicate
x ⊆ y allowing to state when an instance y potentially fills some of the undefined features of another
instance x. For example (1 0⊥) ⊆ (1 0 1), but (1 0⊥) 6⊆ (1 1 1). Moreover we consider a unary
predicate, POSITIVE(x), that holds whenever an input instance x is classified with 1 by the model.
These two are the only logical predicates considered in our initial analysis. With these, the first
interaction in Figure 1b can be formalized as the following first-order logic (FO) sentence over the
mentioned predicates

∃x
(

POSITIVE(x) ∧ (⊥ ⊥ ⊥ ⊥ 0 1 ⊥) ⊆ x
)

(1)

2

Stable job
> 40yo

Previous loans
Owns a house

Has kids
Married

Criminal Record

0
1
1
0
0
1
1

Black Box
Model

Application
Rejected

(a) Diagram of a particular loan decision.

> load("mlp.np");
> show features;
(stableJob, >40yo, prevLoan, ownsHouse,
hasKids, isMarried, crimRecord)

> Exists? positive instance
where isMarried = 1 and hasKids = 0

true

> Exists? positive instance
where isMarried = 0 and hasKids = 1

false

(b) Example of a possible concrete syntax for a language
tailored for interpretability queries.

Figure 1: Example of an unethical bank uses a model to decide whether to accept loan applications
by using binary features like “does the requester has a stable job” and “are they older than 40”.

As our main conceptual contribution we formalize the above intuition by encoding models as
logical structures over which FO queries can be posed (Section 2). We also show that a big set
of interpretability and bias detection queries already considered in the literature can be naturally
expressed as FO sentences over the encoded models (Section 3). In terms of our technical contribution,
we provide a preliminary study of the computational complexity of evaluating queries as FO formulas
over the logical structures we use to encode models (Section 4). This analysis is parameterized by the
length of the queries and considers three concrete classes of models: linear-based models, tree-based
models, and multi-layer perceptrons (MLPs). Our complexity results reaffirm the common wisdom
that evaluating queries largely depends on the underlying model, and extend previous formal results
stating that interpretability and bias detection queries are easier to solve, from a complexity point of
view, for models traditionally considered interpretable (as linear- and tree-based) than for models
traditionally deemed opaque (as MLPs) [6]. As our results show there are many natural scenarios
in which evaluating interpretability queries is intractable. Thus we also explore (in Section 5) two
potential directions for coping with intractability in practical settings.

2 Models and Logical Structures

Models and instances. We consider an abstract definition of a model M simply as a Boolean
function M : {0, 1}n → {0, 1}. That is, we focus on binary classifiers with Boolean input
features. A class of models is just a way of grouping models together. An instance is a vector
in {0, 1}n and represents a possible input for a model. The instances (t1, . . . , tn) ∈ {0, 1}n for
whichM(t1, . . . , tn) = 1 are called positive.

A partial instance is a vector in {0, 1,⊥}n, with ⊥ intuitively representing “undefined” components.
A partial instance x ∈ {0, 1,⊥}n represents, in a compact way, the set of all instances in {0, 1}n
that can be obtained by replacing undefined components in x with values in {0, 1}. We call these the
completions of x.

Due to space constraints, we assume a general background with first-order logic (FO). Any reference
textbook on the subject can be consulted otherwise; cf., [19].

Logical structures for encoding models and instances Consider a fixed modelM and let n be
its input size. We will define a logical structure A on top ofM following the ideas introduced in
our example in the introduction of the paper. Let U = {0, 1,⊥}n be the set of (partial) instances
of dimension n, this will be the universe of A. The vocabulary of A consists of constant symbols
c1, . . . , c|U |, for each element in U , the binary predicate symbol ⊆ and the unary predicate symbol
POSITIVE. We can now properly define A as the following structure over σ:

A = 〈U, {cA1 , . . . , cA|U|}, {⊆
A, POSITIVEA}〉

3

The different components of A are to be interpreted as follows. First, the constants ci are simply
interpreted as their corresponding element in U , that is, ciA = Ui. Then, ⊆ is a binary predicate
whose interpretation includes all pairs x,y such that for every component i it holds that either xi = ⊥
or xi = yi. The interpretation of the unary predicate POSITIVE includes all instances that are positive
forM.

Our proposal for a language is simply FO over the above described structures. That is we allow
the use of quantifiers ∀ and ∃, conectors ∧, ∨,→ and constants and variables to construct formulas
over the base predicates ⊆ and POSITIVE. For instance, Equation 1 is a query in our language. The
semantics of the language is directly inherited from that of FO.

Remark It is important to observe that the structure A that represents model M contains all
possible instances ofM in its universe, and thus its size in exponential in the number of features
ofM. This, of course, precludes the possibility of building A in general. For the query evaluation
problem, however, we do not assume A to be given: the input consists only ofM and the query to be
evaluated over A. The study of the complexity of this problem then involves understanding when is
that it is possible to evaluate the query in an “on-the-fly” fashion, i.e., without explicitly constructing
A.

3 Selected interpretability and bias detection queries

We now show how the structure presented in Section 2 allows for encoding some particular queries
that have already been linked to interpretability and bias detection [11, 30]. As an initial example, we
consider the concept of a Sufficient Reason [11] for an instance x and a modelM, which intuitively
consists of a subset of the features of x that explains its classification given byM.
Definition 1 (Sufficient Reason). Given an instance x and a modelM, a sufficient reason for x
with respect to M is a partial instance y, such that x is a completion of y and every possible
completion x′ of y satisfiesM(x′) =M(x).

Sufficient reasons may contain superfluous information. Consider for example that any instance x is
by definition a sufficient reason for itself, yet we would not consider it a good explanation for its own
verdict. In order to obtain more succinct sufficient reasons we consider the following definition, that
strips sufficient reasons from superfluous information.
Definition 2 (Minimal Sufficient Reason). Given an instance x and a modelM, a minimal sufficient
reason for x with respect toM is a partial instance y, such that y is a sufficient reason for x, but no
proper subset z of y is a sufficient reason for x.

The notion of Minimal Sufficient Reason is analogous to that of a Prime Implicant, which has been
amply studied in logic [17, 33].

We now show how these queries can be defined with the logic presented. We start by defining some
auxiliary formulas that are useful for writing more sophisticated queries.

FULL(x) ≡ ∀z(x ⊆ z → x = z) (2)
COMP(x,y) ≡ (y ⊆ x) ∧ FULL(x) (3)

SAMECLASS(x,y) ≡ FULL(x) ∧ FULL(y) ∧
(
POSITIVE(x)↔ POSITIVE(y)

)
(4)

The first formula distinguishes between partial instances in U and full instances (that can be passed
as inputs to a model). The second one describes completions and third one describes instances that
are classified the same by the underlying model.

We can now make a formula that checks whether a partial instance y is a sufficient reason for an
instance x, and then add the minimality requirement to obtain a minimal sufficient reason.

SR(x,y) ≡ COMP(x,y) ∧ ∀z
(
COMP(z,y)→ SAMECLASS(x, z)

)
(5)

MSR(x,y) ≡ SR(x,y) ∧ ∀z
(
SR(x, z) ∧ y ⊆ z → y = z

)
(6)

3.1 Bias detection

The concepts of bias and unfairness are multidimensional, and require multidisciplinary perspectives
and a constant dialogue with the social sciences [25]. In order to provide a self-contained example,

4

Stable job
> 40yo

Previous loans
Owns a house

Has kids
Married

Criminal Record

1
1
1
0
0
1
0

1
1
1
0
0
1
1

x y

Stable Job

Has kids

false Married

true Owns a house

Previous Loans

false

false true false

truefalse

Criminal Record

Previous Loans

0

1 0

0 1

0 1

1

01

0

1
10

Figure 2: Illustration of the bias in a decision tree used for judging loan applications. Instance x
follows the blue path, while instance y follows the red path. Protected features are underlined.

we focus on a (very) restricted and simplistic concept of bias and start by considering a simplistic
approach to fairness; fairness through unawareness [16, 24]. In this notion, a certain subset of
the features (that is, components of the input) is said to be protected, and consist of features that
intuitively should not be used for decision taking. This usually includes features like gender, age,
marital status, etc.

Even though this property is desirable, it requires the design of models to be originally conscious
of what features to take into account, and which features to consider protected. As the concept of
protected is a dynamic one, that might not always be possible. This motivates the need for being able
to, given a decision and a set of features, decide whether those features were relevant in the decision.

We take the formalization of Darwiche and Hirth [11] of a more flexible notion than not explictly
used, which is to say that the protected features are not being decisive for any input instance. Note
that this notion strictly implies other weaker notions as that of Demographic Parity [24], in which
one expects members of different protected groups to have the same probability of being rejected or
accepted by the considered model.

Definition 3 (Biased decision and model). Given a modelM, of input size n, and a set of protected
features P ⊆ {1, . . . , n}, an instance x is said to be a biased decision ofM if and only if there exists
an instance y such that x and y differ only on features in P andM(x) 6=M(y).

A modelM is said to be biased iff there is an instance x that is a biased decision ofM.

Example 1. Consider that among the features used by a bank to judge loan applications we find
both the criminal record and the marital status of applicants. If the law forbids said considerations,
deeming the features Criminal Record and Married to be protected, then individuals could rebut
decisions they received that could have unfairly been based on such features. Moreover, one would
be interesting in analyzing a posteriori, given a trained model, whether there is actually an individual
who could have been classified unfairly. As illustrated in Figure 2, this particular FBDD is biased, as
it presents a biased decision. The instance x is a positive instance of the model, while the negative
instance y differs from it only on the protected feature corresponding to the criminal record.

We now show how to encode these queries in the proposed logical structure, assuming the set of
protected features P is fixed. For simplicity in what follows we use Pc to denote all non-protected
features.

First, we use the constant symbols 0i (respectively 1i) to refer to the vectors that have 0 (resp. 1) in
the i-th component and ⊥ everywhere else. With this we define the following auxiliary formulas for
every integer 1 ≤ i ≤ n and set S of integers in {1, . . . , n}:

MATCHi(x,y) ≡ (0i ⊆ x ∧ 0i ⊆ y) ∨ (1i ⊆ x ∧ 1i ⊆ y) (7)

MATCHS(x,y) ≡
∧
i∈S

MATCHi(x,y) (8)

5

The first formula says that instances x and y have the same value in the i-th component, while the
second one states that they have matching values for each component in the set S.

BIASEDDECISION(x) ≡ FULL(x) ∧ ∃y(FULL(y) ∧ ¬SAMECLASS(x,y) ∧MATCHPc(x,y))

BIASEDMODEL ≡ ∃xBIASEDDECISION(x)

The first formula states that x is an instance, and that there is an instance y with the opposite
classification such that they match on every non-protected feature, and thus differ only on protected
features.

4 Complexity Results

We begin by briefly introducing the classes of models under which our results apply. We consider the
class of perceptrons and Multilayer perceptrons (MLP) with ReLU activations (for the sake of space
we relegate their precise definition for the appendix). We also consider a generalization of decision
trees in the form of free binary decision diagrams (FBDDs) that we next formalize. A binary decision
diagram (BDD [36]) is a rooted directed acyclic graphM with labels on edges and nodes, where
(i) each leaf is labeled with true or with false; (ii) each internal node (a node that is not a leaf) is
labeled with an element of {1, . . . , n}; and (iii) each internal node has an outgoing edge labeled 1
and another one labeled 0. Instances are classified according to the path they describe from the root
to a leaf, in the same way a decision tree does. A binary decision diagramM is free (FBDD) if for
every path from the root to a leaf, no two nodes on that path have the same label. Note that a decision
tree is a particular case of an FBDD, in which the underlying graph is a tree.

There are several ways to study the complexity of answering queries over data (a model in our case),
depending on whether the size of the query, the data, or both, are fixed [21]. In order to present
a brief discussion, we will study the problem of evaluating queries depending on bounds on their
size. As shown in Section 3, while certain queries like minimal sufficient reason have constant size,
some others like biased decision have size that it is up to linear with respect to the model size. We
study this dependency by considering a family of problems parameterized by a function f , which
determines the relative length of queries with respect to the underlying model. This is reminiscent
of paramaterized complexity [13, 15], in which problems are studied by differentiating between the
instance size and a parameter, which is in general much smaller than the instance size.

Problem: EVALUATION-f
Input: A modelM, that induces a structure A,

a formula ϕ over σ such that |ϕ| ≤ f(|M|).
Output: YES, if A |= ϕ and NO otherwise

As mentioned before, the structure A is always implicit in the input, as its size can be exponential with
respect to the modelM. In a slight abuse of notation, we present results using classes of functions
instead of particular functions for the EVALUATION problem. That is, we describe the complexity of
problems of the form EVALUATION-C, for C a class of functions. When doing so for a complexity
upper bound, we mean that the upper bound holds for every function f ∈ C. When doing so for a
lower bound, we mean that there exists a function f ∈ C for which the bound holds.

The following theorem, whose proof follows by standard results on the complexity of evaluating FO
formulas, sets an upper-bound for the complexity of evaluating polynomially-long queries.
Theorem 1. The EVALUATION-poly(n) problem is in PSPACE for any modelM such thatM(x) is
polynomial space computable for every x.

Next theorem states that, for MLPs, even constant-size queries are hard to evaluate.
Theorem 2. The EVALUATION-O(1) problem is NP-hard and co-NP-hard for MLPs, even over
formulas with only one quantifier.

The proof of the previous theorem follows from the simple observation that, given a boolean formula
ϕ, one can compute an MLPMϕ that is equivalent to ϕ (as boolean functions) in polynomial time
[6]. Then, by building the structure A overMϕ, the queries ∃xPOSITIVE(x) and ∀xPOSITIVE(x)
encode the standard problems SAT and TAUT [3], respectively, from which hardness for both classes
is derived.

6

Note that the previous theorem exploits only one quantifier, and does not use the ⊆ predicate at
all. It is easy to see that the more general case of evaluating a constant size formula belongs to the
class BH = QH = PNP[O(1)] [34], of problems solvable by a polynomial time DTM with a constant
number of queries to an NP oracle, and we conjecture that for every fixed k ≥ 1, there are formulas
of size O(k) over A which are hard for QHk [34], the classes defined by allowing a polynomial time
DTM to make k queries to an NP oracle. A more detailed analysis remains as future work.
Theorem 3. The EVALUATION-O(n) problem is PSPACE-hard for FBDDs and perceptrons, and is
already NP-hard even if the formula ϕ has only one quantifier.

Proof sketch. The first part is proven by a reduction from TQBF, a standard PSPACE-hard prob-
lem [3]. The proof of the second part is more involved, and assumes nothing about the models, as
it only uses the ⊆ predicate. The key idea is to show that the linear size formulas using only the ⊆
predicate can encode arbitrary instances of a restricted (but still NP-hard) variant of CNF-SAT in
which every clause has either only positive literals or only negative literals.

The following theorem states an upper bound for the difficulty of evaluating queries over models
traditionally deemed interpretable, as FBDDs and perceptrons. Let us call existential (resp. universal)
to formulas consisting in a sequence of existential (resp. universal) quantifiers followed by a
quantifier-free formula.
Theorem 4. The EVALUATION-O(1) problem restricted to existential or universal formulas is in
PTIME for FBDDs and perceptrons.

Proof sketch. The proof is constructive, and the key element that forbids the theorem to hold over
MLPs, is that both FBDDs and perceptrons allow us to efficiently determine, given a partial instance,
whether none, some, or all its completions are positive. Such a check is NP-hard for MLPs.

In a nutshell, our results distinguish the complexity of evaluating queries when the underlying model
is an MLP (high complexity) from the case when the underlying model is an FBDD or a perceptron
(lower complexity).

5 Towards tractability

While the previous section establishes theoretical intractability results, this section presents a more
optimistic point of view by considering two directions that may allow for practical tractability:
interactive proofs and knowledge compilation.

5.1 Interactive Proofs

A natural use-case for a language tailored for interpretability and bias detection is that of auditing
models that are being used by companies or government institutions. However, it is often the case
that the computing power of such institutions is greater than that of a regular citizen by several
orders of magnitude. While this situation allows for entities with significant computing power to use
models consisting of millions of features and parameters, which would make any reasoning about
them intractable, it also gives a hint towards tractability. Consider a setting in which a user X wants
to solve an interpretability query over a model published by a company Y . If the computational
complexity of solving said query is in the class NP, even if X may not have the computing power to
compute it, it could be that company Y does. Then Y can send a short certificate of its answers to
X (because of the membership in NP) which X can then quickly verify. As discussed in Section 4,
some of the considered queries are co-NP-hard, and even potentially PSPACE-hard. This implies,
under standard theoretical complexity assumptions (such as NP 6= co-NP [3]), that there are no
polynomially-short certificates for these problems. Interactive Proofs are a potential solution to this
shortcoming. Interactive Proofs are abstract protocols in which two parties, a prover and a verifier,
exchange messages, by rounds, with a particular goal: for the prover to prove something to the
verifier. The complexity class IP [3] contains all problems for which a solution can be proved to a
polynomial-time verifier in polynomially many rounds, up to arbitrarily high probability. The fact
that IP = PSPACE [22, 29] guarantees that all the previously mentioned problems can be treated in
this fashion. That is, entities with large computational power, or distributed computing systems, can

7

prove to individuals with less computational power that their queries are being answered faithfully up
to an arbitrarily high degree of confidence.

5.2 Knowledge Compilation

As shown in Section 4, there is a significant difference in complexity for evaluating queries over
models traditionally deemed interpretable (e.g., decision trees) versus models traditionally deemed
opaque (e.g., MLPs). This difference in complexity applies for every query made in a session by
a user, meaning for example that if a user is to make 10 queries to interpret a deep MLP, each of
those 10 queries could require a large amount of computational resources. Such scenario naturally
suggests that it would be convenient to first transform an MLP to a decision tree (even if for a
high computational cost) in order for posterior queries to run faster. This is precisely the benefit of
Knowledge Compilation [12]. Several authors [30, 31, 32] have explored this avenue with increasing
success, providing algorithms that, while exponential in the worst-case, have allowed for efficiently
compiling small binary neural networks into succinct decision diagrams [30].

6 Future work: logical extensions

While the minimalistic structure presented in Section 2 can already express several different inter-
pretability queries, it is still arguably limited in terms of its expressive power. Our future work aims
to study extensions to the logic that allow both for expressing new queries, and reducing the size of
queries that were expressible before. We briefly discuss some natural extensions.

Counting The semantics and complexity of adding counting operators to First Order Logic have
been studied in depth [2, 14], and would allow in our case to express properties related to the
proportion of instances that satisfy certain properties. For example, one could ask whether the number
of accepted instances for the bank loan problem in which the person has kids is higher or lower than
for people without kids.

Model comparison A natural need one may face is that of interpreting a model, not on its own,
but in comparison to a previously deployed model. For example, queries like “is there an in-
stance of the bank loan problem accepted by M1 and rejected by M2 that is married?” could
be expressed by considering, instead of a single predicate POSITIVE, a sequence of predicates
POSITIVE1, . . . , POSITIVE`, where each predicate would naturally be interpreted according to a
sequence of modelsM1, . . . ,M`. It is easy to see as well that this extension allows for querying
model equivalence, and paired with the previous extension it could allow for a more nuanced study of
the difference of models, by counting for example on how many instances they differ.

Adding functions A binary function δ expressing the pointwise-difference between two in-
stances can allow for expressing new queries and make certain queries more succinctly expressible.
For example the BIASDECISION(x) query can be simplified down to constant size by replacing
MATCHPc(x,y) by δ(x,y) ⊆ ~P , where ~P is the constant instance having 1 in every protected
feature and 0 elsewhere. It is not hard to see that, if one also adds unary predicates HWk, saying that
the hamming weight of an instance is at most k (0 ≤ k ≤ n), counterfactual interpretability queries
like Minimum Change Required1 (the minimum number of features to change required for changing
the verdict of a given instance) [6] become succinctly expressible.

A dedicated study to the expressiveness and complexity of such extensions is part of our future work,
and presents some interesting theoretical challenges. For example, considering the second extension,
one can write a constant size query stating that two input models are equivalent2. It is known that
evaluating equivalence between perceptrons is NP-hard [30], and it is not currently known whether it
can be done in polynomial time for FBDDs [12], although a randomized polynomial time algorithm
is known [8].

1also called Robustness [11].
2∀x(POSITIVE1(x) ↔ POSITIVE2(x))

8

Broader Impact

Although interpretability as a subject may have a broad practical impact, our results in this paper are
mostly theoretic, so we think that this work does not present any foreseeable societal consequences.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] M. Arenas, M. Muñoz, and C. Riveros. Descriptive complexity for counting complexity classes.
Logical Methods in Computer Science ; Volume 16, pages Issue 1 ; 1860–5974, 2020.

[3] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University
Press, 2009.

[4] A. B. Arrieta, N. Díaz-Rodríguez, J. D. Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia,
S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Explainable artificial
intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.
Information Fusion, 58:82–115, 2020.

[5] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

[6] P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux. Model interpretability through the lens of
computational complexity. 2020.

[7] V. Belle. Logic meets probability: Towards explainable AI systems for uncertain worlds.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence Organization, Aug. 2017.

[8] M. Blum, A. K. Chandra, and M. N. Wegman. Equivalence of Free Boolean Graphs can be
Decided Probabilistically in Polynomial Time. Inf. Process. Lett., 10:80–82, 1980.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.

[10] A. Darwiche. Three modern roles for logic in AI. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, May 2020.

[11] A. Darwiche and A. Hirth. On the reasons behind decisions. arXiv preprint arXiv:2002.09284,
2020.

[12] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research, 17:229–264, Sept. 2002.

[13] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer Science.
Springer, 1999.

[14] M. Droste and P. Gastin. Weighted automata and weighted logics. In L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi, and M. Yung, editors, Automata, Languages and Programming,
pages 513–525, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[15] J. Flum and M. Grohe. Parameterized complexity theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006.

[16] P. Gajane and M. Pechenizkiy. On Formalizing Fairness in Prediction with Machine Learning,
2017.

[17] J. Goldsmith, M. Hagen, and M. Mundhenk. Complexity of DNF minimization and isomorphism
testing for monotone formulas. Information and Computation, 206(6):760–775, 2008.

[18] S. R. Hong, J. Hullman, and E. Bertini. Human factors in model interpretability: Industry
practices, challenges, and needs. Proceedings of the ACM on Human-Computer Interaction,
4(CSCW1):1–26, May 2020.

9

https://theory.cs.princeton.edu/complexity/book.pdf
https://arxiv.org/abs/1910.10045
https://arxiv.org/abs/1910.10045
https://www.sciencedirect.com/science/article/abs/pii/S0020019080900782
https://www.sciencedirect.com/science/article/abs/pii/S0020019080900782
https://arxiv.org/abs/2002.09284
http://yaroslavvb.com/upload/flum.pdf
https://arxiv.org/pdf/1710.03184.pdf
https://www.sciencedirect.com/science/article/pii/S0890540108000138
https://www.sciencedirect.com/science/article/pii/S0890540108000138

[19] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, USA, 2004.

[20] H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. W. Vaughan. Interpreting
interpretability: Understanding data scientists' use of interpretability tools for machine learning.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM,
Apr. 2020.

[21] L. Libkin. Elements of Finite Model Theory. Springer Berlin Heidelberg, 2004.

[22] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.
Journal of the ACM, 39(4):859–868, Oct. 1992.

[23] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates,
Inc., 2017.

[24] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A Survey on Bias and
Fairness in Machine Learning, 2019.

[25] E. Ntoutsi, P. Fafalios, U. Gadiraju, V. Iosifidis, W. Nejdl, M.-E. Vidal, S. Ruggieri, F. Turini,
S. Papadopoulos, E. Krasanakis, I. Kompatsiaris, K. Kinder-Kurlanda, C. Wagner, F. Karimi,
M. Fernandez, H. Alani, B. Berendt, T. Kruegel, C. Heinze, K. Broelemann, G. Kasneci,
T. Tiropanis, and S. Staab. Bias in data-driven artificial intelligence systems—An introductory
survey. WIREs Data Mining and Knowledge Discovery, 10(3), Feb. 2020.

[26] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144, 2016.

[27] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

[28] P. Saleiro, B. Kuester, L. Hinkson, J. London, A. Stevens, A. Anisfeld, K. T. Rodolfa, and
R. Ghani. Aequitas: A bias and fairness audit toolkit, 2019.

[29] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, Oct. 1992.

[30] W. Shi, A. Shih, A. Darwiche, and A. Choi. On tractable representations of binary neural
networks. arXiv preprint arXiv:2004.02082, 2020.

[31] A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining Bayesian network
classifiers. arXiv preprint arXiv:1805.03364, 2018.

[32] A. Shih, A. Darwiche, and A. Choi. Verifying binarized neural networks by Angluin-style
learning. In International Conference on Theory and Applications of Satisfiability Testing, pages
354–370. Springer, 2019.

[33] C. Umans. The minimum equivalent DNF problem and shortest implicants. Journal of Computer
and System Sciences, 63(4):597–611, 2001.

[34] K. W. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846, Oct.
1990.

[35] D. Watson. Conceptual challenges for interpretable machine learning. SSRN Electronic Journal,
2020.

[36] I. Wegener. BDDs—design, analysis, complexity, and applications. Discrete Applied Mathe-
matics, 138(1-2):229–251, 2004.

10

https://homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1908.09635
https://onlinelibrary.wiley.com/doi/epdf/10.1002/widm.1356
https://onlinelibrary.wiley.com/doi/epdf/10.1002/widm.1356
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://arxiv.org/abs/2004.02082
https://arxiv.org/abs/2004.02082
https://arxiv.org/abs/1805.03364
https://arxiv.org/abs/1805.03364
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwjj7eujo_noAhX8SRUIHZJ-BewQFjACegQIBBAB&url=http%3A%2F%2Freasoning.cs.ucla.edu%2Ffetch.php%3Fid%3D193%26type%3Dpdf&usg=AOvVaw3PR_FY0kGzfMBfoGTbqSN8
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=2ahUKEwjj7eujo_noAhX8SRUIHZJ-BewQFjACegQIBBAB&url=http%3A%2F%2Freasoning.cs.ucla.edu%2Ffetch.php%3Fid%3D193%26type%3Dpdf&usg=AOvVaw3PR_FY0kGzfMBfoGTbqSN8
https://pdfs.semanticscholar.org/e46c/b895f66ae8671bab35200b825c1fdbd1f740.pdf
https://www.sciencedirect.com/science/article/pii/S0166218X0300297X

In order to simplify our proofs we make a standard syntactical assumption; that all formulas are given
in prenex normal form, that is, with all quantifiers at the beginning and negations appearing only
directly in front of terms. It is well known that every formula in first order logic can be rewritten in
prenex form, taking only polynomial time to do so [21].

As an example, the query SUFFICIENTREASON discussed in Section 3, presented as a formula with
two free variables, can be expressed in prenex form as

ψ(x,y) ≡ ∀v∀w∃z
[
(y ⊆ x) ∧

(
¬(x ⊆ v) ∨ (x = v)

)
∧{

(w ⊆ z ∧ ¬(w = z)) ∨ ¬(y ⊆ w) ∨ (P(w) ∧ P(x)) ∨ (¬P(w) ∧ ¬P(x))
}]

Where the predicate POSITIVE has been abbreviated to P.

Before proving our results, w e state a simple lemma that will helps us along the way.

Lemma 1. The only terms in formulas over A are of the form (possibly negated) POSITIVE(x),
y ⊆ x and x = y, and given a valuation of variables x,y, each of these can be checked in
polynomial time for FBDDs, perceptrons and MLPs.

Proof. Direct from the fact that (partial) instances have polynomial size with respect to any model
for them, and for each of the considered models it takes only polynomial time to determine whether a
given instance is positive or not.

Theorem 1. The EVALUATION-poly(n) problem is in PSPACE for any modelM such thatM(x) is
polynomial space computable for every x.

Proof. There are at most |M|c free variables, for some constant c. We show that one can exhaustively
try every possible valuation of them, and with that evaluate the whole formula in polynomial space.
Indeed, as each variable can take at most 3|M| possible values, there at most

(
3|M|

)|M|c
= 3|M|

c+1

possible valuations. Therefore, we can represent valuations using no more than log 3|M|
c+1

=
O(|M|c+1) bits. Based on Lemma 1, once a valuation is fixed, we can check whether it satisfies the
formula using extra polynomial space. This yields a polynomial space algorithm.

In order to prove Theorem 3, we prove each of its statements as a separate lemma.

Lemma 2. The EVALUATION-O(n) problem is PSPACE-hard for FBDDs and perceptrons.

Proof. We show a reduction from the standard TQBF problem [3], in which one is given a quantified
Boolean formula and asked to decide its truth value. Let χ = Q1x1Q2x2 · · ·Qnxnφ(x1, . . . , xn) be
an input instance of TQBF. First, it is easy to see that, both for FBDDs and perceptrons, one can
build a modelM of dimension n such that

M(x) =

{
1 if x1 = 1

0 otherwise

Let us consider the structure A induced byM. Then let ψ be a formula (with free variables) over
A, syntactically constructed from φ, by replacing every occurrence of a variable xi in φ by the term
POSITIVE(xi) (which we will abbreviate as P (xi) henceforth) where the variables xi

3 are the free
variables of ψ. Now consider the following formula over A:

ξ = Q1x1Q2x2 · · ·Qnxnψ(x1, . . . ,xn)

We claim that A |= ξ if and only if χ ∈ TQBF. Indeed, as the terms P (xi) can effectively
take both values true and false, depending on the particular instance xi that is bound, we can see
equisatisfiability (and thus finish the proof) by doing induction over n, the number of variables.

3Note that xi is the i-th of a sequence of variables over A, and is not to be confused with the i-th component
of a (partial) instance x.

11

• (Base case n = 1) The formula χ is either of the form ∃x1φ(x1) or ∀x1φ(x1), where φ
does not have any quantifiers and thus x1 is the only variable we are dealing with. Let us
focus on the case ∃φ(x1) as the other case is analogous4. The semantics of FO indicate
that ∃x1φ(x1) ≡ φ[x1 → 0] ∨ φ[x1 → 1], where [A → B] corresponds to replace every
occurrence of the term A by the constant value B. In the considered case, ξ ≡ ∃x1ψ(x1)
which has the same truth value as

∨
v∈{0,1,⊥}1 ψ[xi → v]. Note that, by construction, xi

only appears in ψ on terms of the form P (xi) and thus ψ[xi → v] ≡ ψ[P (xi)→M(v)].
Recall that, by construction of ψ, it happens that ψ[P (x1) → M(v)] has the same truth
value as φ[x1 → v]. As v takes values in {0, 1,⊥}1, we have thatM(v) effectively takes
both values 0 and 1, and therefore we have that χ ≡

∨
v∈{0,1} φ[x1 → v] has the same truth

value as
∨

v∈{0,1} ψ[P (x1) → M(v)] which in turn has the same truth value of ξ. This
concludes the base case.

• (Inductive case) The formula χ is either of the form ∃x1φ(x1) or ∀x1φ(x1), but where
now φ(x1) has all its n − 1 variables x2, . . . xn as bound variables. Note that χ′(v) ≡
φ[x1 → v] is a formula with n − 1 bound variables (and no other variables) so by our
inductive hypothesis it happens that it has the same truth value as its corresponding formula
ξ′(v) ≡ ψ[P (x1)→ v] over A, for any value v ∈ {0, 1}. Finally, we can reason by cases
on the initial quantifier of χ. Consider the case where χ ≡ ∀x1φ(x1) as the other case is
analogous. Again, by semantics of FO, the truth value of χ is that of

∧
v∈{0,1} φ[x1 →

v] ≡
∧

v∈{0,1} χ
′(v). But as we show next this is the same truth value of ξ. Indeed,

ξ corresponds in truth value, by the semantics of FO over A, to
∧

v∈{0,1,⊥}n ξ
′(v) ≡∧

v∈{0,1,⊥}n ψ[P (x1) → M(v)]. But by definition M(v) is 1 if v has a 1 in its first
component and 0 otherwise, so we conclude that the truth value of ξ is simply equal to∧

v∈{0,1} ψ[P (x1)→ v], which is the same, by the inductive hypothesis mentioned earlier,
to that of χ. This concludes the proof.

We actually prove a stronger statement than the one explicitly stated in Theorem 3.
Lemma 3. The EVALUATION-O(n) problem over any class of models C is already NP-hard for
formulas with only one existential quantifier.

Proof. We reduce from CNF-SAT with a linear number of clauses, which is well known to be NP-hard
from standard reductions. Consider a formula ϕ =

∧
i Ci, where clause Ci =

∨
j `ij . From each

clause Ci, we create two clauses C ′i,1 and C ′i,2, by introducing a new variable si, in the following
way: ∨

j

`ij

si ∨ ∨
`ij is positive

`ij

︸ ︷︷ ︸

C′
i,1

∧

¬si ∨ ∨
`ij is negative

`ij

︸ ︷︷ ︸

C′
i,2

(9)

It is easy to see that the formula ϕ′ =
∧

i

(
C ′i,1 ∧ C ′i,2

)
is equisatisfiable with respect to ϕ. We say

ϕ′ is a formula in Clause-Monotone-CNF, as every clause is has either only negative literals, or only
positive literals. The previous transformation is enough to show that deciding the satisfiability of
a formula in Clause-Monotone-CNF is NP-hard. We now show that there is a reduction from this
problem to the EVALUATION-O(n) problem for formulas with 1 existencial quantifier.

Indeed, consider a Clause-Monotone-CNF formula ψ = ψP ∧ ψN , where ψP is a CNF formula with
a linear number of clauses in which all literals are positive, and ψN is a CNF formula with a linear
number of clauses in which all literals are negative. For every clause CP

i in ψP , we create a term
TP
i ≡ ¬(x ⊆ bPi), whereas for every clause CN

i in ψN , we create a term TN
i ≡ ¬(bNi ⊆ x). Then,

consider the formula φ which is simply an existencial search on the conjunction of these terms.

φ ≡ ∃x
(
TN
1 ∧ · · · ∧ TN

k ∧ TP
1 ∧ · · · ∧ TP

k′

)
4We consider the case with a universal quantifier in the inductive case, to give the reader a complete analysis

while avoiding to focus on too many details.

12

Note that φ has size linear in the number of variables of ψ, which we can denote n. Now consider
an arbitrary modelM of class C with input size n, and evaluate each free variable b of φ in the way
we show next. If clause CP

i includes variables with indices in a set Si, let bPi be the partial instance
that has ⊥ in every component j ∈ Si and 1 elsewhere. Conversely, if clause bNi , includes variables
with indices in a set Si, let bNi be the partial instance that has 1 in every component j ∈ Si and ⊥
elsewhere. The following claim materializes our reduction.

Claim 1. There is a partial instance x satisfying φ if and only if ψ is satisfiable.

Proof of Claim 1. First, note that by construction any instance x has as many components as ψ has
variables, so we can naturally associated the i-th component of x (xi) to variable xi in ψ. For the
forward direction, consider a partial instance x that satisfies φ, and let σ be the valuation of variables
of ψ that assigns true to variable xi if and only if the instance x has 1 in its i-th component. We will
show that σ satisfies every clause in ψ, and thus the entire formula. Consider an arbitrary positive
clause CP

i ∈ ψ. As x and bPi can only have ⊥ or 1 in any component, by construction, and x
satisfies the restriction ¬(x ⊆ bPi), we know that there is at least one component j for which x has a
1 and bPi has ⊥. But bPi has ⊥ precisely in the components whose associated variables appear in the
clause CP

i , which means that x has a 1 in at least one of those, implying that σ assigns true to at
least one of those, and thus satisfies clause CP

i . Consider now an arbitrary negative clause CN
i ∈ ψ.

As x and bNi can only have ⊥ or 1 in any component, by construction, and x satisfies the restriction
¬(bNi ⊆ x), we know that there is at least one component j for which bNi has a 1 while x has ⊥. But
bNi has a 1 precisely in the components whose associated variables appear in the clause CN

i , which
means that x has ⊥ in at least one of those, implying that σ assigns false to at least one of those, and
thus satisfies clause CP

i . As all clauses CN
i , C

P
i are satisfied by σ, the formula ψ is satisfied by σ.

For the backward direction, consider an assignment σ that satisfies ψ and thus every clause CN
i , C

P
i .

Let x be the partial instance that has 1 in every component associated with a variable that has been
assigned true by σ, and ⊥ elsewhere. Let us check that x satisfies every term. For a term of the form
TP
i ≡ ¬(x ⊆ bPi), we have that bPi has ⊥ precisely in the components associated with variables that

appear in clause CP
i , and as at least one of those is assigned true by σ, we have that x has a 1 in at

least one of the components for which bPi has ⊥, which is enough to satisfy the term. For a term of
the form TN

i ≡ ¬(bNi ⊆ x), we have that bNi has a 1 precisely in the components associated with
variables that appear negated in clause CN

i , and at least one of those variables is assigned false by
σ, we have that x has ⊥ in at least one of the components for which bNi has 1, which is enough to
satisfy the term. As every term is satisfied, we have that the partial instance x satisfies φ.

As the reduction holds regardless of the considered class of models, it works for all of them.

We are now ready to prove Theorem 3.

Theorem 3. The EVALUATION-O(n) problem is PSPACE-hard for FBDDs and perceptrons, and is
already NP-hard even if the formula ϕ has only one quantifier.

Proof. Follows trivially by combining Lemma 2 and Lemma 3.

In order to make the proof of Theorem 4 easier, we start by proving the following lemma.

Lemma 4. Given an FBDD or perceptronM and a partial instance y one can decide in polynomial
time whether there is a positive completion of y underM.

Proof. The case for FBDDs is easy, as it follows directly from the fact that one can count the number
of positive completions over a partial instance y in polynomial time for an FBDD [6]. Indeed, if we
can count the number of positive completions of y, then it is enough to check whether that number is
greater than 0. The case for perceptrons follows from the fact that, given a partial instance y and an
instance x, such that y ⊆ x, one can check in polynomial time whether all completions of y have the
same classification as x [6]. Indeed, consider any completion x of y, for example filling with 0 the
undefined components. IfM(x) = 1, then we are done. Otherwise,M(x) = 0 and it is enough to

13

use the previous fact, as if for all completions z of y it happens thatM(z) =M(x) = 0 we simply
reject the instance.

Theorem 4. The EVALUATION-O(1) problem, restricted to existential formulas or universal formulas
is in PTIME for FBDDs and perceptrons.

Proof. We denote by b1, . . . , bc the constants in the given formula, by x1, . . . ,xm the bound
variables, and by d the dimension of the input model.

Let us quickly discard the case in which the input formula does not have any quantifiers, as using
Lemma 1 is enough to solve the problem. Now, we focus on the case where the input formula contains
only existential quantifiers. This will be enough for the whole theorem, as if the input where to be a
universal formula, we could evaluate its negation, which is existential, and then negate the result.

We start by reducing every constant term (that is, every term that does not contain a bound variable)
to its truth value computed by using Lemma 1 and reducing constants according to the standard rules
over the Boolean connectives. As a result, every term contains a bound variable. Note that every
equality of variables can be rewritten using ⊆ as a double inclusion, which allows to simplify our
analysis to the following eight elemental terms:

1. POSITIVE(xi)

2. ¬POSITIVE(xi)

3. bj ⊆ xi

4. ¬(bj ⊆ xi)

5. xi ⊆ bj

6. ¬(xi ⊆ bj)

7. xi ⊆ xk

8. ¬(xi ⊆ xk)

Let us call term assignment to a function that assigns every elemental term to either true or false.
Note that for an existential formula to be true, there must be a term assignment τ∗ that satisfies the
whole formula and such that there is an assignment of the quantified variables that makes every
elemental term evaluate to the same value that τ∗ dictates.

As the input formula has a constant number of elemental terms, we can afford to exhaustively try
every term assignments. Note that, after the truth value of every elemental term is fixed, the whole
value of the formula can be obtained by simply reducing connectives. This allows to create a list Γ of
term assignments that make the whole formula true, which is of polynomial size. This reduces our
problem to, given a term assignment τ ∈ Γ, decide whether there is an assignment of the quantified
variables that makes every term take the truth value dictated by τ . We will say such an assignment of
the quantified variables is compatible with τ . If for some τ ∈ Γ we find a compatible assignment of
the quantified variables, then the input formula is true, and otherwise we can confidently reject it.

Let us illustrate the ideas so far with a running example.

Example 2. Consider n = 5, and an FBDDM that accepts inputs with a least 3 features having
a value of 1. For instance (1 0 1 0 1) is accepted byM, while (0 0 1 1 0) is not.
Then, let input (partial) instances be b1 = (1 1 1 1 0) and b2 = (⊥ 1 ⊥ 1 ⊥),
and consider the following input formula:

∃x1

(
POSITIVE(x1) ∧ POSITIVE(b1) ∧ (x1 ⊆ b1 ∨ b2 ⊆ x) ∧ ¬(x1 = b1)

)
which we simplify and rewrite as

∃x1

(
POSITIVE(x1) ∧ (x1 ⊆ b1 ∨ b2 ⊆ x1) ∧

(
¬(x1 ⊆ b1) ∨ ¬(b1 ⊆ x1)

))

14

Which, is of the form

∃x1

(
Θ1 ∧ (Θ2 ∨Θ3) ∧

(
Θ4 ∨Θ5

))
where the Θi are elemental terms.

We will now see how to check whether a given term assignment τ has a compatible assignment of the
quantified variables. Once an assignment for the terms is fixed, what we have is a set of restrictions,
and we wonder whether there is a (partial) instance that satisfies all restrictions simultaneously.

Let us discuss how to handle restrictions of the form 3-6, forgetting by now about 1-2. We will check
whether there are instances that satisfy such restrictions with the aid of propositional logic. Let us
define variables 0ij , 1

i
j ,⊥i

j for 1 ≤ j ≤ m and 1 ≤ i ≤ d. Where 0ij means that the j-th feature of
the i-th quantified variable has value 0, and 1ij ,⊥i

j are defined analogously. Note immediately that,
as each component can have at most one value, we want that for every pair (i, j), exactly one variable
out of 0ij , 1

i
j ,⊥i

j is assigned true. We now show how to express restrictions 3− 6 as propositional
formulas over these variables. A restriction of the form xi ⊆ b means that every defined component
of b is either undefined in xi or defined to its same value. For example, if b7 = 1, then ⊥i

7 ∨ 1i7,
or equivalently ¬0i7. We will keep the latter representation. On the other hand, every undefined
component of b must be undefined as well in xi. Therefore, we have the following rewriting rules5:

(xi ⊆ b) `1 ∧ · · · ∧ `d where `j ≡ ⊥i
j if bj = ⊥ and `j ≡ ¬(1− bj)ij otherwise. (10)

Similarly, we have the following rules as well

(b ⊆ xi) `k ∧ · · · ∧ `k′ where `j ≡ (bj)
i
j for every j such that bj 6= ⊥. (11)

Note that the last equation does not necessarily introduce d literals, as the positions for which bi is
equal to ⊥ impose no restrictions on x. Analogously, we pose:

¬(xi ⊆ b) `1 ∨ · · · ∨ `d where `j ≡ ¬⊥i
j if bj = ⊥ and `j ≡ (1− bj)ij otherwise. (12)

as well as

¬(b ⊆ xi) `k ∨ · · · ∨ `k′ where `j ≡ ¬(bj)
i
j for every j such that bj 6= ⊥. (13)

We call formulas on the right hand side of Equations 10 and 11 conjunctives, whereas those in
Equations 12 and 13 will be called disjunctives.

Conjunctive formulas are easy to handle, as they immediately prescribe the values of certain variables
0ij , 1

i
j ,⊥i

j . So we can process each of those formulas, and reject immediately if we find a contradiction.
Otherwise, we proceed to determine, having fixed certain variables according to the processing of
every conjunctive formula, whether there is an assignment of variables that satisfies every disjunctive
formula.

As there is a constant number of elemental terms, there is also a constant number of disjunctive
formulas to satisfy. We can therefore afford to guess, for each disjunctive formula, a literal that
satisfies it. After guessing a set of literals that satisfies every formula, it is easy to check in polynomial
time, for each literal in the set, whether it can be removed while keeping all formulas satisfied. This
allows to obtain, in polynomial time, a list Λ of minimal sets of literals that satisfy every disjunctive
formula. For each set in Λ, we need to check that it does not contradict the values obtained in the
previous step when processing conjunctive formulas, and also that it does not directly break any
restriction of the form 7 or 8. The sets in Λ that fail either of the previous checks are discarded, and
then by combining each surviving set in Λ with the values prescribed by the processing of conjunctive
formulas, we get a list Λ∗ of candidate assignments. It remains to be seen whether it is possible to
extend a candidate assignment so that it satisfies as well restrictions of the form 1 and 2, and that it
still respects restrictions of the form 7 and 8, as we know already it will respect restrictions 3-6.

Let us illustrate the new ideas so far.

5In order to keep the notation clean, we consider a constant b with no index, but the same treatment holds for
all constants b1, . . . , bc.

15

Example 3 (Continuation of Example 2). Maintaining our previous notation, we forget about
Θ1 and consider that Θ2 is false, Θ3 is true and Θ5 is true. We omit Θ4, assigned to true, as it
simply the negation of Θ2. Therefore we have the following restrictions:

1. ¬Θ2 ≡ ¬(x1 ⊆ b1) 011 ∨ 012 ∨ 013 ∨ 014 ∨ 115

2. Θ3 ≡ (b2 ⊆ x) 112 ∧ 114

3. Θ5 ≡ ¬(b1 ⊆ x) ¬111 ∨ ¬112 ∨ ¬113 ∨ ¬114 ∨ ¬015

The second restriction imposes directly that the searched variable x1 has a 0 on its second
component, and a 1 on its fourth component. After applying the second restriction, the remaining
two can be further simplified to:

1. 011 ∨ 013 ∨ ∨115

2. ¬111 ∨ 013 ∨ ¬015

Then, the assignment (011,¬111) is viable, and can be simplified to 011. Together with the second
restriction obtained in the first paragraph, we note that the assignment imposing 011, 112, and
114 is a candidate assignment. One can then check that, any instance respecting this candidate
assignment, like (0 1 0 0 1) respects the considered assignment for every term.

As a consequence of the precedent steps, we have either found at least one candidate assignment for
the variables that satisfies τ (except for the elemental terms of form 1-2), or that no such assignment
exists. If no candidate assignment exists, we can safely discard τ as a term assignment and proceed
to consider the next one. If we have found candidate assignments, we have to check whether there is
any of them which can be extended to satisfy as well the restrictions of the form 1-2 and 7-8.

In order to consider restrictions of the form 7, we can first imagine that every restriction of the form
(xi ⊆ xk) is an edge between a node xi and xk in a directed graph. Strongly connected components
in such graph impose that the involve variables must be equal, and after being collapsed to a single
node, one gets a directed acyclic graph for which a topological order can be computed in polynomial
time. Then, we can iterate through the variables according to the topological order, and for each
quantified variable xi we are iterating over, all propositional variables of the form 0ij or 1ij that
are forced to be true by the candidate assignment we are considering, must propagate to 0kj or 1kj
(respectively) for every k such that the graph indicates that xi ⊆ xk (even if transitively). This will
enforce that everything assigned so far by the current candidate assignment is validating restrictions
of the form 7 thus far.

For each of the constantly many restrictions of the form ¬(xi ⊆ xk) we can afford to guess a
component 1 ≤ j ≤ d such that xi will have a defined value (namely 0 or 1) on its j-th component,
and xk will not have it. For each of these guesses (note that there is a polynomial number of them),
we have fully enforced restrictions of the form 3-6 and 8. Therefore it only remains to see whether
we can find values for every component we have not assigned to anything yet such that restrictions of
the form 1 and 2 are satisfied (while obviously not breaking restrictions of the form 7, which we have
not fully enforced).

Let us say that a variable xi for which we have the restriction POSITIVE(xi) is a full variable, as
we need to give a defined value to each of its components. Every variable that is not full can be
called a partial variable. Note that if we have a restriction of the form (xi ⊆ xk), and xi is a full
variable, then it must hold that xi = xk, which simplifies our problem as one of them can be safely
deleted, thus reducing the number of quantified variables. Therefore, when considering a restriction
like (xi ⊆ xk), we assume that xi is not a full variable, and either xk is a full variable, or it is not.
If xk is not a full variable, then nothing special needs to be done, as keeping xk with undefined
components (every component not forced to be 0 or 1 by the previous restrictions) will satisfy the
restriction (xi ⊆ xk) and also any potential restriction of the form ¬POSITIVE(xk). A border case
is when the previous restriction have enforced every component in xk to take either 0 or 1 and yet xk

is not a full instance. If that is the case, and we have a restriction of the form ¬POSITIVE(xk), then
one simply checks whether that holds or not (if it holds then nothin needs to be done, but if it does not

16

then we discard the candidate assignment, as it not possible to satisfy said restriction. If, on the other
hand, xk happened to be a full variable, we relegate its treatment to the next part of the algorithm.

At the moment, we are considering a fixed term assignment, a fixed candidate assignment for the
components, and several components being fixed to a value according to restrictions discussed in the
previous paragraphs. Keeping all of said fixed values for each quantified variable, it remains only
to be seen whether there is a way to assign the components that we have not fixed so far to values
in such a way that all restrictions of the form POSITIVE(xi) hold. We can thus see the problem as,
given a list of partial instances x′i (according to the values fixed so far), decide whether there is
positive completion xi for each of them. This is actually the only step which we can do for FBDDs or
perceptrons but that cannot be done efficiently for MLPs (unless PTIME = NP). By using Lemma 4
a constant number of times, we can decide if there is a completion xi of x′ that holds POSITIVE(xi)
for every quantified variable xi, which was the only remaining step to verify whether the candidate
assignment, and the fixed values, could satisfy all restrictions. If this is not the case, however, we can
discard the assignment

We illustrate once again this last step on our running example.

Example 4 (Continuation of Example 3). We have x′1 = (0 1 ⊥ 1 ⊥), and we need to
decide whether there is a positive completion of x′1. As the model we are considering accepts
instances that have at least 3 features with value 1, it is enough to consider the completion
x1 = (0 1 1 1 0). The reader can now check that x1 indeed satisfies the original formula.

As each step of the described procedure can be done in polynomial time, and correctness is proved
throughout the algorithm, we conclude the proof.

17

	Introduction
	Models and Logical Structures
	Selected interpretability and bias detection queries
	Bias detection

	Complexity Results
	Towards tractability
	Interactive Proofs
	Knowledge Compilation

	Future work: logical extensions

